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Abstract

Purpose – The paper compares multi-period forecasting performances by direct and iterated method using
Bayesian vector autoregressive (VAR) models.
Design/methodology/approach – The paper adopts Bayesian VAR models with three different priors –
independent Normal-Wishart prior, the Minnesota prior and the stochastic search variable selection (SSVS).
Monte Carlo simulations are conducted to compare forecasting performances. An empirical study using US
macroeconomic data are shown as an illustration.
Findings – In theory direct forecasts are more efficient asymptotically and more robust to model
misspecification than iterated forecasts, and iterated forecasts tend to bias but more efficient if the one-period
ahead model is correctly specified. From the results of the Monte Carlo simulations, iterated forecasts tend to
outperform direct forecasts, particularly with longer lag model and with longer forecast horizons.
Implementing SSVS prior generally improves forecasting performance over unrestricted VAR model for
either nonstationary or stationary data.
Originality/value – The paper finds that iterated forecasts using model with the SSVS prior generally best
outperform, suggesting that the SSVS restrictions on insignificant parameters alleviates over-parameterized
problem of VAR in one-step ahead forecast and thus offers an appreciable improvement in forecast
performance of iterated forecasts.
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Paper type Research paper

1. Introduction
Vector autoregressive (VAR) models have been widely used to forecast macroeconomic
variables and to analyze macroeconomics and policy. For one-period ahead forecasting, one
has to just estimate the model. However, it is often the case that more than one-period
forecasting is of interest. In making a multi-period forecast, there are two methods – direct
forecast method and iterated forecast method, and there have been several theoretical
research about which method is better for multi-period forecasting such as Bhansali (1996,
1997), Clements and Hendry (1996), Kang (2003), Chevillon and Hendry (2005), Ing (2003) and
among others. These literature tend to conclude that direct forecasts aremore robust tomodel
specification and more efficient asymptotically, and thus the direct forecast method is
preferable comparedwith the iterated forecastmethod, while the iterated forecastmethod can
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be more efficient only if the one-period ahead model is correctly specified. However, some
empirical research studies show that iterated forecasts outperform direct forecasts. Ang et al.
(2006) find that the iterated forecasts of the US GDP growth perform better than the direct
forecasts. Marcellino et al. (2006) show that iterated forecasts outperform direct forecasts,
especially with longer lag and longer forecast horizon; this paper uses 170 US monthly
macroeconomic time series for either univariate or multivariate models. Pesaran et al. (2011)
state that whether direct or iterated method is better in multi-period forecasting depends
upon the sample size, forecast horizon, the underlying data generating process (DGP) and the
methods used to select lag length for the model, and thus it is ultimately an empirical matter.

For multivariate VARmodels, there exists an over-parameterization problem, which leads
to imprecise inference and thus deteriorates the forecast performance. Some Bayesian
approaches to VAR models have been increasingly popular since Bayesian method can
shrink VARmodels by restricting its prior distributions. In this paper we investigate whether
restricted parsimonious VAR models can mitigate misspecification problem and thus
improve the forecasting performance of iterated method. Here, an independent Normal-
Wishart prior is used for the unrestricted VAR and the Minnesota prior (Minn) and the
stochastic search variable selection (SSVS) prior are used for the restricted prior to compare
multiperiod forecasting performance between the direct and iterated forecast method.

We conduct numerical simulations using both stationary and nonstationary data
generating processes (DGPs) to evaluate forecasting performances with 2-, 4-, 8- and 12-step
ahead horizons, and compute the mean squared forecast error (MSFE) to compare direct
forecasts with iterated forecasts usingBayesianVARmodelswith unrestricted and restricted
priors. Iterated forecasts are found to outperform direct forecasts for both unrestricted and
restricted VAR models, particularly with long-lag model and with long forecasting horizon.
Implementing SSVS in VAR is found to generally improve forecasting performance
appreciably. With relatively long lag length and thus a large number of parameters in the
model, it seems that SSVS can effectively restrict insignificant parameters in the model and
thus improve forecasting performance.

The plan of this paper is as follows. In Section 2multi-period forecasting usingVARmodel is
described, and method to evaluate forecasting performances. Section 3 reviews Bayesian VAR
modelswith three different priors – the independent Normal-Wishart prior, theMinnesota prior
and the SSVS prior. Section 4 illustrates numerical experiments with artificially generated data,
and then examines the results of the numerical simulations. Section 5 illustrates an application
to a simple three variables VAR of US macroeconomics. Section 6 concludes. This paper is
based on preliminary working papers, Sugita (2018), Sugita (2019a) and Sugita (2019b). All
results reported in this paper are generated using Ox version 7.2 for Linux (see Doornik, 2013).

2. Iterated and direct multi-period forecasts for VAR models
This section describes iterated and direct forecasting methods for VAR models. Let yt be an
n 3 1 vector of observations at time t, then a VAR model with p lag is written as

y0t ¼ μ0 þ
Xp

i¼1

y0t−iΘi þ ε0τ (1)

for t 5 1, . . ., T, where μ is a n 3 1 vector of an intercept term; Θi are n 3 n matrices of
coefficients for i 5 1, . . ., p; «t are n 3 1 independent Nn 0;Σð Þ errors; and the covariance
matrix Σ is an n 3 n positive definite matrix.

The one-step ahead forecast by0tþ1jt of the VAR model is obtained by estimating

the parameters in eq. (1) as by0tþ1jt ¼ bμ0ðIÞ þPp
i¼1y

0
tþ1−ijtbΘðIÞ;i, where bμðIÞ and bΘðIÞ;i are the
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estimators for μ and Θi in eq. (1). To make forecasting further than one-period ahead into the
future, there are two methods for making multi-period forecasts – iterated forecasts and direct
forecasts methods. Iterated forecasts for the h-period forecasts are obtained recursively as

by0tþh ¼ bμ0ðIÞ þXp

i¼1

by0tþh−i
bΘðIÞ;i (2)

where byijt ¼ yj for j ≤ t.
Direct forecasts for the multi-period forecasting are obtained by estimating the model

y0t ¼ μ0 þ
Xp

i¼1

y0t−h−iΘi þ εt; (3)

Then using the estimated coefficients directly to make the forecast of

bytþh ¼ bμðDÞ þXp

i¼1

yt−ibΘðDÞ;i (4)

where bμðDÞ and bΘðDÞ;i are the estimators for μ and Θi in eq. (3). Thus, the relative forecast

accuracy depends on how accurate bΘðIÞ;i and bΘðDÞ;i are estimated. If bΘðIÞ;i is badly estimated
with large errors, then its powered values diverge increasingly from Θi. Since the iterated

method depends on one-period ahead coefficients bΘðIÞ;i, the directmethod is preferablewhen the
one-period ahead model is not specified correctly. Chevillon and Hendry (2005) evaluate the
asymptotic and finite-sample properties of direct forecastingmethod, and show that, compared
with iterated method, the direct method is more efficient asymptotically, more precise in finite
samples and more robust against model misspecification. The theoretical advantages of the
direct forecasting method over the iterated method are shown by Bhansali (1996, 1997),
Clements and Hendry (1996), Kang (2003) and Ing (2003) among others. However, Marcellino
et al. (2006) evaluates a large-scale empirical comparison of iterated and direct forecasts using
US macroeconomic time series data, and finds that iterated forecasts tend to have smaller
MSFEs than direct forecasts, contrary to the theoretical preference of direct forecasts.

To evaluate the forecasting performances among several different models, the MSFE is
the most widely used. Let y0τþh is a vector of observations at time τþ h for τ5 τ0, . . .,T� h�
1, and h 5 2-, 4-, 8- and 12-step ahead forecasts. Then, bΦ ¼ bμ0; bΘ0

1; . . . ;
bΘ0

p

� �0
is estimated

for both the direct and iterated method, using information up to τ � 1 to forecast valuesbyτþh

starting from τ 5 τ0 up to τ 5 T � h � 1, and calculate the MSFE defined as:

MSFE ¼ 1

T � h� τ0 þ 1

XT−h

τ¼τ0

yτþh �byτþhjbΦ;Yτ�1

h i2
: (5)

where Yτ−1 ¼ Xτ−1;Xτ−2; . . . ;X1ð Þ.
3. Bayesian VARs
This section presents Bayesian VAR models with three different priors – independent
Normal-Wishart prior, the Minnesota prior and the SSVS prior. The VARmodel in eq. (1) can
be written in matrix form as follows:

Y ¼ XΦþ ε (6)

where theT3 nmatrixY is defined asY ¼ ðy1; . . . ; yTÞ0; theT3 (1þ np) matrixX is defined

as X ¼ ðx1; . . . ; xTÞ0; the (1 þ np) 3 1 vector is defined as xt ¼ 1; y0t−1; . . . ; y
0
t−p

� �0
, the

(1 þ np)3 n matrix Φ is defined as Φ ¼ ðμ0;Θ0
1; . . . ;Θ

0
pÞ0; and the « is a T3 n matrix with
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ε ¼ ðε1; . . . ; εTÞ0. Based on the VAR model in eq. (1) or eq. (6), we describe briefly the three
priors in the following subsections.

3.1 Independent Normal-Wishart prior
The VAR model in eq. (6) with the independent Normal-Wishart prior

vec Φð Þ∼MN vec Φ0ð Þ;V0ð Þ (7)

Σ∼ IW Σ0; ν0ð Þ (8)

whereMN refers to a multivariate normal with mean vec(Φ0) and covariance-variance matrix
V0: IW refers to an invertedWishart distribution with parameters Σ0 and degrees of freedom,
ν0. Unlike the natural conjugate priors, prior forΦ in eq. (7) and Σ in eq. (8) are independently
specified. With the joint prior and the likelihood, the conditional posterior densities of vec(Φ)
and Σ are derived as follows:

vecðΦÞjΣ;Y ∼MNðvecðΦ*Þ;V*Þ (9)

ΣjΦ;Y ∼ IW Σ*; ν*
� �

(10)

where V* ¼ V−1
0 þ Σ⊗ X 0Xð Þ� �−1

and vec B+ð Þ ¼ V* V−1
0 vec Φ0ð Þ þ Σ⊗Iκð Þ−1vec X 0Yð Þ

h i
,

Σ* ¼ Y −XΦð Þ0 Y −XΦð Þ þ Σ0, and ν* 5 T þ ν0. Given these conditional posterior

specifications above, the Gibbs sampler generates sample draws.
Note that, with zero prior meanΦ05 0 and large prior variance V0 in eq. (7), the posterior

mean for Φ is almost identical to the Maximum likelihood estimator. In this paper the
hyperparameters are set at vec(Φ0)5 0 andV05 100 in eq. (7), Σ05 0.1I, and ν5 5 in eq. (8).

3.2 Minnesota prior
Litterman (1986) proposes what we call the Minnesota prior which is shrinkage prior for a
Bayesian VAR model with random walk components. For a VAR model with p-the lag in eq.
(1), the Minnesota prior for the coefficients assumes that the importance of the lagged
variables is shrinking with the lag length, so that the prior is tighter around zero with lag
length such thatΘi ∼Nð �Θi;VðΘiÞÞwhere the expected values ofΘi is defined as �Θ1 ¼ In and
�Θ2 ¼ � � � ¼ �Θp ¼ 0n, and the variance of Θi is given as:

V ðΘiÞ ¼ λ2

i2

1 θ bσ1
2� bσ22 � � � θ bσ12� bσn2

θ bσ2
2� bσ12 1 � � � θ bσ22� bσn2
..
. ..

.
1 ..

.

θ bσn2� bσ12 θ bσn2�bσ2
2 � � � 1

2
66664

3
77775; (11)

where 0 < θ < 1, and Σ ¼ diag bσ2
1; . . . ;bσ2

n

� �
. In this paper, the hyperparameters in eq. (11) are

set at λ 5 0.05 and θ 5 0.1.

3.3 SSVS prior
Without any restriction on the regression coefficients and the covariance matrix in eq. (1),
VAR models usually has over-parameterization problem. They contain a very large number
of parameters, leading to imprecise inference and deterioration of the forecast performance.
To overcome this problem, George et al. (2008) apply the Bayesian SSVS method in a VAR.
The SSVS method, proposed by George et al. (2008) and George and McCulloch (1997),
restricts the parameters of the model by using a hierarchical prior on the parameters.
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SSVS defines the prior for the VAR coefficientΦ for each element inΦ. Letfj be each element
in Φ, then the prior for fj is a hierarchical prior with mixture of two normal distributions with
different variance conditional on an unknown dummy variable γj that takes zero or one:

fjjγj ∼
�
1� γj

�
N
�
0; τ20;j

�
þ γjN

�
0; τ21;j

�
(12)

where τ20;j is small and τ
2
0;j < τ21;j. This implies that if γj5 0, that is, the elementfj is restricted to be

close to 0 as fjjγj ∼Nð0; τ20;jÞ, the prior for fjjγj is virtually zero with small variance, on the other
hand, if γj5 1, that is, the elementfj is unrestricted asfjjγj ∼Nð0; τ21;jÞ, the prior is relatively non-
informative with large variance. The priors on γj are assumed to be independent Bernoulli pi∈ (0,
1) random variables as follows:

P
�
γj ¼ 1

� ¼ pj

P
�
γj ¼ 0

� ¼ 1� pj (13)

where pj is the prior parameter and pj 5 0.5 for a natural default choice.
George and McCulloch (1997) and George et al. (2008) use a default semiautomatic

approach that sets τkj ¼ ckbσfj
for k5 0, 1, wherebσfj

is the OLS estimates of the standard error
of fj in an unrestricted VAR and pre-selected constants c0 and c1 must be c0 < c1 e.g. c05 0.1
and c15 10 as used byGeorge et al. (2008), Jochmann et al. (2010) and Jochmann et al. (2013). In
this paper, we follow these values for the hyperparameters.

4. Monte Carlo simulations
This section presents Monte Carlo simulations to illustrate forecasting performances for both
iterated and direct forecast methods using VARmodels. TwoDGPs are considered: one follows
non-stationary process and the other follows stationary process. For eachDGPs, 100 samples of
sizeT5 150 were simulated, and then for each sample, three types of priors are compared: (1)
inverted Normal-Wishart (INW) prior, (2) Minnesota (Minn) prior and (3) SSVS prior.

The following two DGPs for VARs are considered for this experiment. Both DGPs contain
intercept term. DGP 1 is a four-variable VAR with four lags, containing unit roots with
parameters

DGP1 : ΦðDGP1Þ ¼

0:2 0:2 0:2 0:2
0:8 0 0 0
0 0:4 0 0
0 0 0:4 0
0 0 0 0
0:2 0 0 0
0 0 0 0
0 0 0:3 0
0 0 0 0:4
0 0 0 0
0 0:3 0 0
0 0 0 0
0 0 0 0:3
0 0 0 0
0 0:3 0 0
0 0 0:3 0
0 0 0 0:3

2
66666666666666666666666666664

3
77777777777777777777777777775

; and ΨðDGP1Þ ¼
1 0:5 0:5 0:5
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

where Ψ is upper-triangular of the Choleski decomposition of Σ�1 5 ΨΨ�1.
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Next, DGP 2 is also a four-variable VAR with four lags, but stationary data with
parameters

DGP 2 : ΦðDGP2Þ ¼

0:5 0:5 0:5 0:5
0:6 0 0 0
�0:3 0:6 0 0
0 �0:3 0:6 0
0 0 �0:3 0:6
0 0 0 0

�0:2 0 0 0
0 �0:2 0 0
0 0 �0:2 0

�0:3 0 0 �0:2
0 �0:3 0 0
0 0 �0:3 0
0 0 0 �0:3
0:3 0 0 0
0 0:3 0 0
0 0 0:3 0
0 0 0 0:3

2
66666666666666666666666666664

3
77777777777777777777777777775

; and ΨðDGP2Þ ¼ ΨðDGP1Þ:

Each DGP is repeated 100 times to obtain 100 samples. As for determination of the lag length
p, three different methods are used as (1) p5 4 (fixed), (2) p5 8 (fixed), and (3) p chosen by the
Akaike information criterion (AIC) with 0 ≤ p≤ 12. The first method has the fixed lag length
as p5 4 is the true lag length. We do not use the Bayesian information criterion (BIC) for the
lag length determination since the BIC is generally choosing short lag length, and the use of
SSVS means that short lag model is not required to consider. For the selection of lag by the
AIC, the AIC is computed at each date τ, where τ0 ≤ τ ≤ T � h, based on the one-step ahead
regression for the iterated forecasts, and on the h-step ahead regression eq. (4) for the direct
forecasts. For each τ in eq. (5), MCMC is run with 20,000 draws after 5,000 burn-in from τ5 τ0
up to τ 5 T � h � 1 to compute the MSFEs in eq. (5) for each estimator by a recursive
forecasting exercise of both an iterated and a direct multi-period forecasting method.

The Monte Carlo simulations for the multi-step forecasting are examined. Table 1
summarizes theMSFEs of both iterated and direct forecastsmethodswith forecast horizon 2-,
4-, 8- and 12-steps ahead. The MSFE in the table are the sum of the MSFE for each variable.
For all series, pseudo-out-of-sample forecastsbyτþh are computed for τ5 80 to τ5 150� h� 1,
then we calculate the MSFE defined as eq. (5). Each figure in Table 1 is the average over 100
sample MSFEs. Inspection of Table 1 suggests the following:

(1) Among the three estimators by the INW, the Minn and the SSVS, the SSVS produces
the lowest MSFE in most cases, though in a very few cases of direct forecasts the
Minn shows barely better performances than the SSVS.

(2) The forecast performances by SSVS prior tends to be insensitive to the choice of the
lag length, while the INW estimator considerably deteriorates the performances as
the lag length is longer. That is, even if the lag length is more than 4 (that is the true
lag length), the SSVS treats the coefficients on longer lags to be zero, while the
forecast performances of other two models are largely depend upon the selection of
the lag length. The Minnesota prior effectively provides shrinkage in parameters of
the longer lags.
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(3) For the INW and the SSVS, the iterated method of forecasts is better than the direct
method, though for the Minn the results by iterated method are better for DGP2 than
those by the direct method, but in some cases worse for DGP1.

(4) For these DGPs, the SSVSmodel with iterated forecast performs best for any forecast
horizon.

Table 2 illustrates the distributions of the relative MSFE, that is the ratios of the MSFE of the

direct forecast to theMSFE of the iterated forecast for different forecast horizons, MSFE directð Þ
MSFE iteratedð Þ.

The table shows the mean, standard deviations, 95% highest posterior density intervals
(HPDI) of the relative MSFE, and pr.(<1), which is probability that the ratio is less than 1 (the
direct forecasts performs better than the iterated forecasts). The following results are found:

(1) For the INW and the SSVS, the mean values of the relative MSFEs are always greater
than 1 (means that the iterated forecasts outperform the direct forecasts), while for the
Minn the ratios are either greater or less than 1.

(2) For the INWand the SSVS, themean values of the relativeMSFEs are getting large as
the forecast horizons are longer, meaning that the relative performance of the iterated
forecasts improves with the forecast horizon.

(3) TheMSFE ratios by the INW are quite sensitive to the choice of the lag length. As the
lag length is longer, the relative MSFEs by the INW are getting larger. However,
the relativeMSFE by the SSVS is not affected by the choice of the lag length due to the
insensitivities of the SSVS to the lag length.

(4) For all three estimators, the standard deviations of the relativeMSFE are larger as the
forecasts horizon is longer.

DGP 1 DGP 2
Forecast horizon Forecast horizon

Model Method 2 4 8 12 2 4 8 12

Lag 5 4
INW Direct 7.352 11.62 25.33 40.50 8.536 13.48 19.40 24.76

Iterated 7.047 10.29 19.46 29.39 8.273 12.34 15.80 19.39
Minn Direct 7.103 10.50 21.77 34.75 8.858 13.58 18.40 23.15

Iterated 7.114 10.52 21.31 35.10 8.349 12.27 16.16 20.37
SSVS Direct 6.517 10.14 21.92 34.28 8.091 12.47 17.74 22.72

Iterated 6.381 9.405 17.43 26.03 7.729 11.72 15.38 18.87

Lag 5 8
INW Direct 9.579 15.49 34.15 55.85 11.11 17.67 25.50 32.35

Iterated 9.035 13.18 24.59 36.95 10.54 15.61 19.02 22.29
Minn Direct 7.768 11.49 24.26 39.23 9.825 14.83 20.17 24.58

Iterated 8.013 12.43 27.12 40.94 9.452 13.77 18.43 23.84
SSVS Direct 6.788 10.80 23.87 37.53 8.407 13.05 18.50 23.81

Iterated 6.621 9.838 18.23 27.15 7.962 12.04 15.75 19.26

Lag by AIC
INW Direct 9.766 16.74 44.74 79.95 11.86 18.98 27.88 40.70

Iterated 9.183 13.31 25.55 42.84 10.43 15.31 19.46 24.07
Minn Direct 7.340 11.25 25.19 41.81 9.280 14.00 18.48 23.99

Iterated 7.550 11.50 24.15 45.29 8.841 13.01 17.25 21.99
SSVS Direct 6.681 10.78 24.16 37.88 8.437 13.15 18.65 24.22

Iterated 6.595 9.750 18.23 27.36 7.937 11.97 15.71 19.28

Table 1.
Monte Carlo
simulation:
average MSFEs
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DGP 1 DGP 2
Forecast horizon Forecast horizon

Model 2 4 8 12 2 4 8 12

Lag 5 4
INW Mean 1.043 1.125 1.277 1.335 1.031 1.090 1.221 1.269

St dev 0.027 0.079 0.206 0.320 0.029 0.063 0.117 0.172
HPDI (L) 0.991 0.938 0.912 0.821 0.974 0.982 1.031 0.915
HPDI (H) 1.100 1.272 1.790 2.162 1.090 1.242 1.486 1.676
Pr.(<1) 0.06 0.05 0.07 0.12 0.07 0.09 0.02 0.05

Minn Mean 0.999 0.997 1.016 0.999 1.062 1.107 1.137 1.132
St dev 0.031 0.071 0.193 0.294 0.035 0.063 0.097 0.154
HPDI (L) 0.944 0.850 0.660 0.507 0.993 0.987 0.980 0.895
HPDI (H) 1.052 1.123 1.462 1.607 1.141 1.249 1.363 1.410
Pr.(<1) 0.50 0.49 0.49 0.51 0.03 0.04 0.04 0.22

SSVS mean 1.021 1.074 1.241 1.293 1.047 1.061 1.136 1.173
St dev 0.026 0.073 0.208 0.289 0.041 0.063 0.122 0.180
HPDI (L) 0.964 0.951 0.862 0.803 0.971 0.938 0.961 0.892
HPDI (H) 1.073 1.248 1.722 2.066 1.135 1.203 1.469 1.583
Pr.(<1) 0.23 0.12 0.08 0.13 0.11 0.17 0.06 0.12

Lag 5 8
INW Mean 1.060 1.166 1.357 1.446 1.054 1.132 1.345 1.467

St dev 0.040 0.096 0.253 0.421 0.034 0.072 0.180 0.312
HPDI (L) 0.982 0.988 0.942 0.803 0.986 1.021 1.022 1.097
HPDI (H) 1.146 1.396 1.976 2.871 1.119 1.304 1.772 2.059
Pr.(<1) 0.07 0.04 0.08 0.10 0.06 0.01 0.01 0.01

Minn Mean 0.970 1.166 0.905 0.834 1.040 1.079 1.092 1.030
St dev 0.034 0.096 0.224 0.328 0.035 0.061 0.108 0.176
HPDI (L) 0.899 0.750 0.537 0.307 0.966 0.975 0.915 0.705
HPDI (H) 1.044 1.126 1.324 1.570 1.105 1.206 1.323 1.381
Pr.(<1) 0.81 0.84 0.69 0.75 0.15 0.10 0.20 0.41

SSVS Mean 1.024 1.091 1.289 1.349 1.055 1.081 1.159 1.206
St dev 0.027 0.073 0.211 0.299 0.043 0.062 0.122 0.207
HPDI (L) 0.974 0.965 0.942 0.821 0.981 0.986 0.961 0.876
HPDI (H) 1.080 1.242 1.722 2.054 1.137 1.235 1.461 1.774
Pr.(<1) 0.14 0.09 0.05 0.09 0.05 0.05 0.05 0.12

Lag by AIC
INW Mean 1.068 1.275 1.729 1.875 1.140 1.253 1.456 1.687

St dev 0.163 0.313 0.596 0.861 0.155 0.290 0.519 0.695
HPDI (L) 0.760 0.791 0.905 0.845 0.871 0.794 0.690 0.787
HPDI (H) 1.466 1.974 3.136 4.556 1.459 1.957 2.626 3.614
Pr.(<1) 0.35 0.20 0.04 0.09 0.22 0.20 0.22 0.12

Minn Mean 0.975 0.990 1.073 1.066 1.052 1.080 1.076 1.091
St dev 0.055 0.130 0.305 0.454 0.061 0.104 0.128 0.190
HPDI (L) 0.871 0.753 0.607 0.373 0.928 0.926 0.839 0.750
HPDI (H) 1.075 1.235 1.718 2.218 1.211 1.373 1.363 1.500
Pr.(<1) 0.72 0.54 0.47 0.50 0.16 0.17 0.29 0.34

SSVS Mean 1.014 1.106 1.313 1.367 1.062 1.097 1.171 1.224
St dev 0.041 0.110 0.237 0.353 0.051 0.077 0.139 0.237
HPDI (L) 0.946 0.927 0.979 0.795 0.965 0.973 0.982 0.914
HPDI (H) 1.087 1.348 1.877 2.251 1.187 1.273 1.460 1.883
Pr.(<1) 0.37 0.15 0.07 0.12 0.10 0.12 0.04 0.12

Table 2.
MSFE ratio
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(5) Except for the Minn, the probability that the ratio is less than 1 is generally smaller
with long-lag length.

(6) In the case of the Minn with non-stationary data, direct forecasts tend to have lower
MSFEs than iterated forecasts, though with stationary data, the results are opposite
as iterated forecasts lead to better performance than direct forecasts.

These findings show that for given DGPs the SSVS also has almost same properties in
forecasting as the INW, as suggested by Marcellino et al. (2006). That is, forecasting
performance by the SSVS also shows that the iterated forecast tends to outperform the direct
forecast, especially with long-lag and longer forecast horizon. For the Minn, the results are
ambiguous. Since the Minnesota prior set its prior mean for the coefficients on the first own
lag to be 1 and other coefficients to be zero, theMinnesota prior prone to producemisspecified
parameter estimates.

5. An empirical analysis
For an empirical example of comparison of the direct and iterated forecasts using Bayesian
VARmodels, this section considers multivariate model of USmacroeconomics that uses three
variables – unemployment rate, inflation rate and interest rate. A VARmodel that uses these
variables has been analyzed by Cogley and Sargent (2005), Primiceri (2005), Koop et al. (2009)
and Jochmann et al. (2010), among many others. Our US data are quarterly, from 1953:1 to
2020:1 with sample size T 5 268. Unemployment rate is measured by the civilian
unemployment rate, inflation by the 400 times the difference of the log of CPI, which is the
GDP chain-type price index, and interest rate by the three-month Treasury bill. These data
are obtained from the Federal Reserve Bank of St. Louis [1], and are plotted in Figure 1.

The selection of the number of lags in a VAR affects efficiency in estimation and thus
forecasting performances. Cogley and Sargent (2005) and Primiceri (2005) work with VAR(2)
to analyze US macroeconomy with the three variables without mentioning any particular
reason how the lag length is chosen. Jochmann et al. (2010) use VAR(4) for their SSVS VAR
model because the SSVS can find zero restrictions on the parameters of longer lags even if the
true lag length is less than 4. However, the true lag length might be larger than 4. With our
data set, the number of lags is scattered depending uponwhich criterionwe use –VAR(10) by
the AIC, VAR(4) by the Hannan–Quinn criterion and VAR(2) by the BIC. Even if the true lag
length is less than 10, the SSVS can set zero restrictions on the longer lags, thus we consider
VAR (12) and VAR (AIC) where the lag length is chosen by the AIC. Forecast horizons are 2-,
4-, 8- and 12-period ahead. We work with a recursive forecasting exercise using both direct
and iteratedmultistep forecasting method, with data up to time τ� 1, where τ5 τ0, . . .,T� h
� 1, and τ0 5 80.

Table 3 presents the MSFEs eq. (5) for the three-variable VAR with the lag-length 12 and
chosen by the AIC for the INW, the Minn and the SSVS estimators. For any forecast horizon,
iterated forecasts have lower MSFE than direct forecasts. With enough long lag length of 12
the SSVS improves the forecast performance among other methods. However, with the lag
selected by the AIC, almost half of the MSFEs by VAR with the Minnesota prior have the
lowest MSFEs. Compared with the fixed lag length of 12, the lag length chosen by the AIC is
shorter than 12 and theMSFEs are smaller than the MSFEs by the models with lag length 12.
This indicates that the lag length 12 may be too long, containing unnecessary lags or
parameters, though the SSVS is supposed to restrict insignificant coefficients to be zero. This
indicates that SSVS is effective in ensuring parsimony in over-parameterized VAR(12) model.

The three variables used in this empirical analysis appear to be nonstationary, and thus
transformation to stationary data by taking their first difference is also considered. For this
case, the forecasting models are estimated usingΔyt instead of yt in eq. (1), then these models
are used to compute the forecast of the level of yt þ h such asbytþh ¼ yt þ

Ph
i¼1Δbytþijt for the
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iterated forecast, andbytþh ¼ yt þ Δbytþh for the direct forecasts. All elements of the priormean
for the Minnesota prior are set to be zero as �Θ1 ¼ 0n since all series are transformed to be
stationary by the first differencing. Table 4 presents the MSFEs of the case of the first

Unemp 
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Interest 
 

1960 1970 1980 1990 2000 2010 2020

–7.5

–5.0

–2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0 Unemp 
Inflation 

Interest 
 

Forecast horizon
2 4 8 12

Model Variable Direct Iterated Direct Iterated Direct Iterated Direct Iterated

Lag 5 12
INW Unemp. 0.514 0.133 2.299 0.988 3.513 3.117 5.585 4.771

Inflation 3.600 2.063 5.829 3.791 10.93 8.507 20.49 11.32
Interest 2.758 1.414 6.026 3.308 12.60 10.72 17.23 14.87

Minn Unemp. 0.505 0.139 2.234 0.994 3.386 3.072 5.536 5.274
Inflation 2.379 1.184 4.372 2.688 9.092 6.161 16.99 9.681
Interest 1.954 0.885 4.343 2.549 9.315 7.908 13.56 11.48

SSVS Unemp. 0.359 0.073 1.346 0.634 3.839 2.166 4.243 2.808
Inflation 2.252 1.136 4.085 2.514 9.443 6.098 15.57 8.937
Interest 2.133 1.001 4.112 2.530 10.10 7.563 17.94 11.23

Lag by AIC
Average Lag 9.220 9.958 7.446 9.958 9.768 9.958 5.863 9.958

INW Unemp. 0.449 0.113 1.910 0.801 3.319 2.507 5.571 3.670
Inflation 3.292 1.954 4.634 3.092 10.74 6.009 18.53 6.859
Interest 2.516 1.260 5.333 2.897 11.66 8.718 13.81 11.51

Minn Unemp. 0.435 0.120 1.889 0.818 3.223 2.656 5.295 4.354
Inflation 2.034 1.138 3.500 2.297 9.104 5.103 13.84 7.159
Interest 1.903 0.838 3.802 2.311 8.967 6.947 10.40 10.30

SSVS Unemp. 0.351 0.072 1.389 0.619 3.827 2.142 4.129 2.817
Inflation 2.038 1.079 3.182 2.315 9.553 5.525 15.26 7.755
Interest 2.020 0.966 3.790 2.580 9.799 7.691 14.48 11.60

Figure 1.
Data: US

unemployment rate,
interest rate,
inflation rate

Table 3.
MSFEs for US data:

level data
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difference data. The MSFEs of the first difference data tend to have lower MSFEs than the
case of the level data, particularly for the inflation rates. These results also indicate that
iterated forecasts outperform direct forecasts and the SSVS improves forecast performances
than other models though the Minn produces better in some cases.

6. Conclusions
This paper examines comparison of direct and iterated multistep forecasting performance
using three estimators for VAR model – the inverted Normal-Wishart (INW) prior, the
Minnesota prior and the SSVS prior. Theoretically, directmethod is preferable since the direct
forecasts are prone to be efficient and more robust to model misspecification. Iterated
forecasts are more efficient if the one-step ahead model is not misspecified. Since George et al.
(2008) show VAR with SSVS prior greatly improves the one-step ahead forecast, the
coefficients are estimated more efficiently and thus an iterated multi-period forecast method
would be more efficient than the direct method. So, it is of interest if direct forecasts are
compared with iterated forecasts using SSVS VAR model. Although Pesaran et al. (2011)
noted that whether the direct or iterated method produced better forecasts is ultimately an
empirical question; this paper considers the case of three estimators of VAR for comparison of
direct and iterated method using two DGPs and US macroeconomics data. The results are
exactly same as Marcellino et al. (2006), that is, iterated forecasts for the INW and SSVS
estimators have lower MSFEs than direct forecasts, particularly if the models are with long-
lag and longer forecast horizon, while it is ambiguous for the case of theMinnesota prior. The
SSVS estimator tends to appreciably improve the forecast performance against other
estimators by the INW and the Minnesota prior in most cases.

As an empirical example an application of USmacroeconomics is studied to show a benefit
of using SSVS prior in a VAR. With longer lags and thus large number of parameters that

Forecast horizon
2 4 8 12

Model Variable Direct Iterated Direct Iterated Direct Iterated Direct Iterated

Lag 5 11
INW Unemp. 0.352 0.114 1.206 0.787 3.394 2.613 5.361 4.104

Inflation 3.427 1.723 3.612 2.582 4.829 4.268 8.325 5.246
Interest 2.035 1.439 4.256 3.143 8.903 9.314 13.69 12.37

Minn Unemp. 0.343 0.112 1.184 0.782 3.375 2.642 5.264 3.898
Inflation 1.739 0.965 2.579 1.469 3.920 2.336 5.421 2.889
Interest 1.777 0.879 3.479 2.344 7.146 6.484 10.06 8.915

SSVS Unemp. 0.365 0.069 1.271 0.565 3.204 2.361 4.669 3.913
Inflation 1.611 0.906 2.217 1.368 3.651 2.385 4.684 2.975
Interest 1.777 1.063 3.610 2.430 6.930 6.877 9.787 10.08

Lag by AIC
Average Lag 7.851 10.54 6.042 10.54 3.494 10.54 1.000 10.54

INW Unemp. 0.355 0.114 1.150 0.786 3.124 2.607 4.798 4.431
Inflation 2.099 1.916 2.671 2.533 3.846 3.967 4.757 5.200
Interest 1.827 1.622 3.930 3.276 7.278 9.547 9.858 12.08

Minn Unemp. 0.348 0.112 1.145 0.790 3.147 2.665 4.797 4.421
Inflation 1.695 0.941 2.471 1.367 3.453 2.508 4.552 3.249
Interest 1.843 0.869 3.642 2.445 7.181 7.141 9.834 10.23

SSVS Unemp. 0.360 0.067 1.287 0.574 3.196 2.317 4.634 3.901
Inflation 1.616 0.904 2.265 1.335 3.647 2.413 4.406 3.253
Interest 1.644 1.022 3.494 2.493 6.979 6.971 9.704 10.67

Table 4.
MSFEs for US data:
first difference data
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may includemany insignificant, it seems that SSVS alleviates over-parameterization problem
in VAR model by restricting insignificant parameters of the model, and enables to improve
forecasting performance, although theMinnesota prior also produces smallerMSFEs in some
case than SSVS since the Minnesota prior provides shrinkages on the longer lags.

With these results, iterated forecasts are found to produce better forecast performances
than direct forecasts, and Bayesian method such as the Minnesota prior model and the SSVS
model outperform the INW, particularly with longer lag and longer forecast horizon.

Note

1. https://fred.stlouisfed.org
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